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Abstract 

 
Warehousing demand prediction is an essential part of the supply chain, providing a 
fundamental basis for product manufacturing, replenishment, warehouse planning, etc. 
Existing forecasting methods cannot produce accurate forecasts since warehouse demand is 
affected by external factors such as holidays and seasons. Some aspects, such as consumer 
psychology and producer reputation, are challenging to quantify. The data can fluctuate widely 
or do not show obvious trend cycles. We introduce a new model for warehouse demand 
prediction called MAGRU, which stands for Multi-layer Attention with GRU. In the model, 
firstly, we perform the embedding operation on the input sequence to quantify the external 
influences; after that, we implement an encoder using GRU and the attention mechanism. The 
hidden state of GRU captures essential time series. In the decoder, we use attention again to 
select the key hidden states among all-time slices as the data to be fed into the GRU network. 
Experimental results show that this model has higher accuracy than RNN, LSTM, GRU, 
Prophet, XGboost, and DARNN. Using mean absolute error (MAE) and symmetric mean 
absolute percentage error(SMAPE) to evaluate the experimental results, MAGRU’s MAE, 
RMSE, and SMAPE decreased by 7.65%, 10.03%, and 8.87% over GRU-LSTM, the current 
best model for solving this type of problem.  
 
 
Keywords: Gated Recurrent Unit, Attention mechanism, Commodities demand forecast, 
Time series, Neural Network  
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1. Introduction 

Logistics and warehouse lean management is a new interdisciplinary discipline combining 
the Internet and traditional manufacturing. It is gaining more and more attention in the industry 
because it provides an essential basis for product manufacturing and warehouse operations and 
significantly saves business costs. The evolution of logistics and warehouse management, 
driven by advancements in technology, especially the Internet and IoT, has revolutionized 
these fields. The application of lean management principles has further enhanced the 
efficiency, reduced waste, and optimized processes in these operations. This interdisciplinary 
discipline is increasingly important in the context of global supply chain complexities and the 
rising demand for rapid, cost-effective delivery systems. 

In some scenarios, some commodities with high requirements for a preservation time frame, 
such as food, medicine, etc., need more accurate inventory forecasts to improve warehouse 
management sales and save operational costs while ensuring demand. Furthermore, logistics 
and warehousing demand forecasting is a time series forecasting problem for which the 
balance between model complexity and practical applicability is crucial, there is a need for 
integrating external data sources and employing hybrid models to address these challenges, 
potential improvements or new approaches could include exploring new machine learning 
techniques and enhancing model adaptability to varying data scales and external factors. The 
common forecasting methods include the auto regressive (AR) [1], the auto regressive 
integrated moving average (ARIMA) [2], etc. Neural network-based models such as recurrent 
neural network (RNN) and its variant long-short term memory (LSTM), gated recurrent unit 
(GRU) are also widely used in time series prediction [3-5], but the existing time series 
forecasting methods have the following limitations:  

1) Machine learning methods cannot take full advantage of the complex external factors 
that influence demand, making it challenging to meet the requirements for forecast accuracy. 

2) For highly customized commodities, which require long-term demand forecasting, the 
performance of existing models degrades when making long series forecasts, leading to bias 
in the prediction. 

3) Commodity demand sampling is usually done on a weekly or daily basis, thus the data 
scale is small. Complex models are computationally expensive and tend to overfit for small-
scale data sets. This makes many complex models unsuited to logistics warehouse demand 
forecasting scenarios. 

All the above limitations show that the existing prediction models are challenging to 
explore the characteristics of commodity demand data and do not apply to the logistics and 
warehousing demand forecasting problem. Therefore, the implications of improved 
forecasting models are significant for business efficiency, cost savings, and customer 
satisfaction in the logistics sector, highlighting the necessity for ongoing research and 
development in this area. 

In this paper, we propose a new prediction model based on a multi-layer attention 
mechanism combined with GRU to solve the logistics demand forecasting problem. The main 
contributions of this paper are summarized as follows: 

1) We propose embedding the temporal features of the original data, capturing the mapping 
between demand and time, and mining the influence of hidden factors that are difficult to 
quantify on demand. 

2) We propose a multi layer attention model, it focuses on long-term dependence and 
improves the prediction performance of the model in a long sequence. 
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3) We propose a new model that combines the base model GRU with the attention 
mechanism, improving model convergence speed, saving arithmetic power, and performing 
well on small-scale datasets. 

The rest of this paper is organized as follows: Section 2 reviews the time series forecast 
and demand prediction problem and the literature. Then, we describe the warehouse demand 
prediction problem in Section 3. Section 4 describes the methodology of this study. Section 5 
details the experiment setup and discusses the findings. Section 6 provides conclusions. 

2. Related Works 
Time series forecasting is the basis of warehouse demand forecasting and has remained a 
widely studied hot issue. Classical time series forecasting methods are ARIMA, ARCH, and 
GARCH [6-7]. However, there is a limitation that only linear models can be built, while 
realistic prediction tasks contain linear features and are often influenced by nonlinear features. 

2.1 Machine learning methods 
The application of machine learning in time series forecasting has revolutionized the way we 
approach these problems, transforming them into a form suitable for supervised learning. This 
transformation is primarily achieved through feature engineering, where raw time series data 
is manipulated to extract meaningful features that can be fed into various machine learning 
models. Such models excel in handling complex data structures and solving nonlinear 
problems through multi-variable collaborative regression. Among the most representative 
methods in this domain are XGboost [8], Prophet [9], and LightGBM [10-11]. These 
algorithms have been widely acknowledged for their efficiency and accuracy in forecasting 
tasks.  

However, a significant limitation of these methods is the necessity of preprocessing data 
via feature engineering before model training. This process can often be laborious and time-
consuming, requiring substantial domain knowledge and expertise. To circumvent these 
challenges, deep learning techniques have been increasingly employed in time series analysis 
[12]. Long Short-Term Memory (LSTM) networks and Gated Recurrent Unit (GRU) models, 
with their inherent ability to capture temporal dependencies, are specifically tailored to address 
the nuances of time series data. Additionally, sequence-to-sequence (Seq2seq) models [13] 
and WaveNet [14] have gained prominence for their effectiveness in forecasting. CNN model 
is often used to solve the problem of image classification. After improvement and development, 
it can also be used to solve the time series problem [15-16]. 

2.2 Combine the attention mechanism 
Furthermore, the integration of Attention Mechanisms in models like the Transformer [17] has 
opened new avenues in time series forecasting. By focusing on specific parts of the data 
sequence, these mechanisms allow for more nuanced and accurate predictions, especially in 
long sequences. The Transformer model, originally designed for natural language processing 
tasks, has demonstrated remarkable results in time series forecasting due to its ability to 
capture long-range dependencies. Li et al. [18] in their study developed an attention 
mechanism recognition framework using recurrent neural networks (RNN). This framework 
is specialized for efficient classification of pulse streams with complex PRI modulation and in 
high spurious pulse and missing pulse ratio environments. While Zeng et al. [19] introduced a 
deep attention residual neural network (DARNN) which is designed to predict the remaining 
useful life (RUL) of a machine. The core advantage of DARNN is its ability to efficiently 
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extract degraded features from signals. Zucchet et al. [20] demonstrated an RNN equipped 
with linear recursive layers and a feedforward path with multiplicative gating. This RNN is 
capable of accurately realizing linear self-attention, which is a key component of the 
Transformer Network. Ye et al. [21] proposed a novel temporal attention model that can assign 
appropriate weights to time-varying features during the prediction process. A bidirectional 
gated recurrent unit (GRU) based network intrusion detection model with hierarchical 
attention mechanism is presented [22].  

Wu et al. [23], on the other hand, devised a hybrid network model that combines both 
shallow and deep networks and constructed these networks with separate positional attention 
mechanism and interactive multiple attention mechanism to capture multilevel features. Du et 
al. [24] proposed an innovative temporal attention encoder-decoder model specialized in 
multivariate time series prediction. Kavianpour et al. [25] used a hybrid network model that 
combines a convolutional neural network (CNN), a bi-directional long and short-term memory 
network (Bi-LSTM), and an Attentional Mechanisms deep learning model with Zero Order 
Holding (ZOH) preprocessing method as a way to predict the maximum magnitude and 
number of earthquakes in the next month. Cao et al. [26] proposed a novel model called 
Spatial-Temporal Adaptive Graph Convolutional Network (ST-AGCN) for skeleton-based 
action recognition by utilizing graph neural networks with the aim of extracting spatial-
temporal features to improve the accuracy of action recognition.  

Since current clustering algorithms lack effective representation learning, Diallo et al.  [27] 
proposed a shrinkage self-encoder-based deep embedding clustering method for solving the 
problem of large-scale high-dimensional document data clustering. A systolic autoencoder is 
a variant of an autoencoder that introduces additional constraints in learning a low-dimensional 
representation of the data in order to facilitate the learning of a representation with local 
contrast preserving properties. The article then proposes a new framework, DECCA, which 
learns embedded representations of documents by maximizing the clustering loss and the 
reconstruction loss and uses local contrast preservation to improve the accuracy and efficiency 
of clustering. And Khan et al. [28] Wang presents an innovative approach to multiview 
clustering, tackling the issue that current methods overlook the flow structure of consensus 
representations in kernel space. This oversight often results in the neglect of the interrelations 
among different multiviews. In terms of processing multi-view data, current deep learning 
methods need to drive different neural networks independently for different viewpoints, 
resulting in low efficiency and high computational resource consumption, Diallo et al. [29] 
proposed an innovative Multi-view Deep Embedded Clustering (MDEC) model that employs 
a triple fusion technique designed to reduce the errors incurred in learning the features of each 
view and correlating data from multiple views. None of the existing methods in attributed 
graph clustering realize that the nonlinearity between two consecutive GCN layers is 
unnecessary for improving the performance of attributed graph clustering, and may even 
impair the efficiency of the model. Liao et al. [30] propose a novel deep linear graph attention 
model for attributed graph clustering consisting of an attention-based aggregation module and 
a similarity preserving module (DLGAMC) is used to solve the above problem. 

2.3 Commodity demand prediction 

Fite et al. [31] used a stepwise multiple linear regression model to predict the future logistics 
demand of the region. Bergman et al. [32] used Bayes’ rule to improve the prediction accuracy 
of parts for which the established demand model in the new equipment program did not have 
enough time to develop. Bhuwalka et al. [33] proposed a Bayesian hierarchical model. This 
model is capable of simultaneously estimating specific demand parameters (e.g., price and 
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income elasticities) as well as overall parameters for different regions and sectors. To improve 
the long-term prediction accuracy of feed requirement, Yang et al. [34] established a long-
term dynamic prediction model of feed requirement by using the combined multiple regression 
model and predicted the variation trend of various factors affecting feed grain demand by using 
the ARIMA model. Huber et al. [35] proposed a decision support system that provides 
hierarchical forecasts at different organizational levels based on up-to-date point-of-sale data 
to support daily operations. Markers are used to extend the hierarchy of commodity clusters 
based on day sales patterns and apply multivariate ARIMA models to predict daily perishable 
food demand. He et al. [36] proposed a long short-term memory with particle swarm 
optimization method for e-commerce enterprises. The particle swarm optimization meta 
heuristic optimizes the number of iterations for training. Li et al. [37] constructed a composite 
model with an attention mechanism to predict sales. Linear and nonlinear features were 
captured using the prophet and GRU models with an attention mechanism. Guo et al. [38] 
propose a neural network model, to improve the MLP neural network using a deep learning 
training mechanism, and established a model based on the multilayer perceptron neural 
network algorithm, which provides a feasible method for industrial logistics demand 
forecasting. Cai et al. [39] proposed a multimodal data-based approach that combines spatial 
feature fusion and grouping strategies to construct a neural network prediction model for 
electronic goods demand. Gao et al. [40] proposed a supply chain network combining a neural 
network goods demand prediction method with a particle swarm optimization (PSO) algorithm, 
based on an analysis of a traditional supply chain and a modern supply chain model. This 
model aims to solve the problems of communication barriers, poor information flow, and 
supply-demand imbalance among enterprises. 

3. Preliminary 

3.1 Notation 
Given n(n>1)time series for features and a time series for targets, We use (1) to represent the 
feature vectors with time step t, and x is daily demand data. 

_ 1 2{ , ,..., }feed en tX x x x=                                                 (1) 
We use (2) to represent the target vector where y is daily demand data.  

_ 1 2{ , ,..., }feed de tY y y y=                                                (2) 
We use (3) to represent the set of the output of the encoder and use (4) to represent the 

future values of the target series, where τ  is the time step to be predicted. 
1 1 2 2( , ,..., )n n T

t t t t t t tx x x xα α α′ =                                          (3)  

1 2' { , ,..., }t t tY y y y Rτ
τ+ + += ∈                                          (4) 

3.2 Problem Statement 
 

Given feature sequence as shown in (1) and target sequence as shown in (2), where samples 
of features and labels are daily demand data. We aim to find a mapping and predict the 
future values over the next τ  time steps as shown in (5). 

1 2 1 2 1 2' , ' ,..., ' ( , ,.. , , ,... )t t t T Ty y y f y y y x x xτ+ + + =                         (5) 
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4. MAGRU MODEL 
In this section, we introduce Multi-layer Attention with Gated Recurrent Unit (MAGRU) and 
its detailed implementation. The overall framework of our proposed model is shown in Fig. 1. 

The main two components are encoder and decoder. The input to the model are tensors 
containing T time step data, the feature dimension of each step data is N. The output of the 
model is a vector, and the length of the vector is equal to the prediction task. 

The encoder uses an attention mechanism to capture key information about the input 
sequence. Firstly, the encoder calculates the importance of each sample by the attention layer. 
Specifically, the attention mechanism first generates a weight for each sample of the input 
sequence. This process is accomplished by multiplying the representation of the input 
sequence by a matrix, which is a trainable weight matrix, to produce a score (i.e., an "attention 
score"). This score is then a good reflection of the importance of each input sample relative to 
the entire sequence. Next, we normalize these attention scores using a softmax layer. By 
processing the softmax layer, we ensure that the sum of the attention scores of all samples is 
1, so that each score can be interpreted as the relative importance of that sample in the whole 
sequence. After completing the above steps, these weighted samples are fed into a recurrent 
neural network (GRU in our model) for further processing. The GRU utilizes these weighted 
samples to update its hidden state, thus effectively encoding the key information of the input 
sequence. 

The decoder uses an attention mechanism to fuse with the GRU network to make 
predictions about the target. The decoder has two input values, the value of the encoder output 
and the historical prediction value. Taking the same approach as encoder, decoder uses an 
attention layer and later predicted by GRU. Finally, the prediction results are output after two 
fully connected layers. 

 
Fig. 1. Multi-layer Attention with Gated Recurrent Unit(MAGRU) module. 
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4.1 Embedding 
The ability to capture long-term independence in forecasting requires global information such 
as hierarchical timestamps (week, month, and year) and agnostic timestamps (holidays, events). 
Since demand data is entered into the model in chronological order, it leads to neglecting the 
properties of time itself, which in turn leads to potential degradation of forecasting 
performance. For these reasons, we embed the original data before it is fed into the model.   

The results after embedding are embedded as features in the original data so that the 
prediction can take into account the trend around a time period, and unknowable time stamps 
such as holidays can be obtained and used for prediction. 

4.2 Encoder 
The demand for a commodity is influenced by various factors. There are k time series in the 
encoder stage, but the importance of these k series for our future prediction is not the same. It 
is necessary to calculate its weight through the attention mechanism. The detailed process of 
the encoder attention stage is shown in Fig. 2. 

An encoder is essentially an RNN. For the time series prediction problem, given an input 
sequence, the encoder is used to learn the mapping from x to ht as shown in (6), where t 
represents the time step. 

1( , )t t th f h x−=                                                             (6) 
Where: 
ht is the hidden layer state of the encoder at time t, which depends on the current input data 

xt and the hidden layer state ht-1 at the previous time. 
f is a mapping relation, that can be used in RNN, LSTM, or GRU, and our proposed model 
uses GRU as f to capture the temporal dependencies. 
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Fig. 2. The details of the encoder. Input is the data after embedding 

 
Each GRU cell is controlled by a reset gate and an update gate with the following update 

algorithm: 
1( )t t xr t hr rR X W h W bσ −= + +                                               (7) 

1( )t t xz t hz zZ X W h W bσ −= + +                                               (8) 
Where: 
h is the number of hidden cells. 
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n d
tx R ×∈  is a batch of inputs at a given time step t, with the number of samples n and the 

number of inputs d. 
ht-1 is the hidden state of the previous step. 
Rt is the reset gate and Zt is the update gate. 
Wxr,Whr,Wxz,Whz are the weight parameters to be trained, br, bz are the bias parameters. 
σ is the sigmoid function that controls the value domain at [0,1]. 
The hidden state at time t is: 

, 1 ,' tanh( ( ) )t t x h t t h h hh X W R h W b−= + +                                               (9) 

1(1 )t t t t th Z n Z h −= − +                                                         (10) 

GRU presents a certain network memory over time, which can overcome the problem of 
RNN gradient vanishing. Reset gates help to capture short-term dependencies in the time series, 
and update gates help to capture long-term dependencies in the time series. 

Given a sequence of k, we build an attention mechanism using the hidden state and the 
current GRU cell state, as shown in (11): 

1 1 ,tanh( ( ; ))k T
t l l t t l i k ls v W h s U x b− −= + +                                         (11) 

In the above equation vl, Wl and Ul are the parameters to be trained. For simplicity, we will 
bias the value bl can be omitted. 

,

,
1

exp( )

exp( )

t jt
j T

t k
k

s

s
α

=

=

∑
                                                       (12) 

α is the weight of the jth input sequence at moment t. The results derived from the attention 
mechanism are transformed into probability values by the softmax, so each data batch is 
weighted by its importance. A batch of samples is obtained, and the individual batch samples 
form a sequence of inputs to the GRU. With these weights, we can encode the timing in order 
of importance, and the encoder can selectively focus on some input sequences without having 
to treat all of them the same. So the output after the encoder is defined as (13): 

1 1 2 2( , ,..., )n n T
t t t t t t tx x x xα α α′ =                                              (13) 

 

Algorithm 1 The learning algorithm of the encoder 
Input: A time step sequence x 
Output: The result after the encoder xencoder 

1: Input the data set x of feature n and length T. 
2: Initialize the attention weight value s0 and the hidden state h0 of the GRU. 
3:set i = 0 

4:while i < timestep do 

5:    Compute the attention weights of each element k
ts  by (11) 

6:    Compute the probability by the softmax layer t
jα by (12) 

7:    Compute tx′  by (13) 

8:    Update GRU hidden layer status 1 -1( , )t t th f h x=  

9:    Compute xencoder = ht 

10:   i = i+1 

11: end while 

12: return x’, xencoder 
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4.3 Decoder 
Encoding all the input sequence information into a fixed-length vector will result in missing 
data, and too-long sequences can cause poor characterization and prediction performance. The 
decoder was used in this study to solve these problems. We add the attention mechanism here 
to capture key sequences considering global data, to avoid performance degradation due to 
long sequences. We use GRU to decode the input information to take advantage of the 
correlation of the data in the time domain. The Decoder phase is shown in detail in Fig. 3. 
 

 
Fig. 3. The details of the decoder. Input is the data after Embedding. The input is Encoder data, and 

the output is the predicted target. 
 

We use a temporal attention mechanism that automatically selects the state of the encoder 
output in the all-time series. Then calculate the encoder output state score through the attention 
mechanism in the decoder stage. Thus, the more important hidden states are selected as the 
data to be input to the GRU network. 

'
1 1tanh( ( ; ) )i T

t d d t t d i te v W d s U h b− −= + +                                     (14) 

Where v, W and U are all parameters to be trained. 

1

exp( )

exp( )

i
i t
t T

j
t

j

e

e
β

=

=

∑                                                        (15)

 

Where e is the calculated attention weight. By weighting b with the hidden state h, we can 
obtain the vector c, as shown in (16). 

1

T
i

t t i
i

c hβ
=

=∑                                                            (16) 

We use the ct vector as an input to the GRU to obtain the hidden state dt at the moment t, 
as shown in (17). 

1( , )t t td f d c−=                                                         (17) 

f is a GRU cell, and our prediction target can be obtained in (18): 
' ( ( ; ) )T
t y y T T w vY v W d c b b= + +                                          (18) 

Where (dT; eT) is a series of two vectors, W and v are the model parameters, and bw, bv are 
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the bias values. This linear model obtains the final prediction target. 

1, ,... ( ( ; ) )T
T T T y y T T w vy y y v W d c b bτ+ + = + +                              (19) 

 
Algorithm 2 The learning algorithm of the decoder 
Input: The historical predicted value y, the output of the Encoder layer x 
Output: Predicted value Y’ 

1: Initialize the attention vector value c0 and the state d0 of the decoder. 
2: set i = 0 

3: while i < timestep do 

4:    Compute the attention weights of encoder i
te  by (14)   

5:    Compute the probability by the softmax layer t
jβ by (15) 

6:    Compute tc  by (16) 

7:    Update cn, dn by GRU 

8:    Compute Y’  by two fully connected layer 

9:    i = i+1 

10: end while 

11: return Y’ 

5. Experiments 

5.1 Data selection and processing 
This study selects the data from the 2016 Ali Tianchi demand forecasting and storage planning 
Competition (Links to datasets). The dataset contains historical data for a total of 5778 
commodities from October 10, 2014 to December 27, 2015. The prediction target is the real 
demand of commodities. 

The prediction accuracy of time series is mainly influenced by the internal trends of 
predicted target and other features. Internal trends include cyclical trends and seasonal trends. 
Internal features are often implied in data fluctuations and need to be mined by the model. 
External features are features derived from some field of data. Different external features have 
different degrees of influence on the model. This study selects some features that are important 
to the problem through feature engineering and removes the features that are not very relevant 
to the problem.  

In the experiments, we filter the external features to achieve the dimension reduction of the 
data. On the one hand, do this can accelerate the training, and on the other hand, it can increase 
the robustness of the model. Because of the wide variety of all commodities and the different 
demand patterns for each commodity, the experiment selects the trend of individual 
commodities among them as the data set. Correlation analysis of other features including the 
predicted target leads to the following heat map. The heat map is shown in detail in Fig. 4. 
The horizontal and vertical coordinates of Fig. 4 are the feature fields of this dataset.  

For the selection of features, this study is based on three reasons: Firstly, the correlation 
between features and target variables is positive; secondly, the number of features is as small 
as possible, and the correlation between features is low; thirdly, the features have well 
explanation for the target. Based on these reasons and the correlation of external features to 
the prediction target, the experiment selects seven features, “num_gmv”, “amt_gmv”, 
“qty_gmv,amt_alipay”, “num_alipay”, “pv_ipv”, and “pv_uv”, as features. 
 

https://tianchi.aliyun.com/competition/entrance/231530/information
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Fig. 4. The heat map of features correlation coefficient 

 
To display the data characteristics of the demand more directly for this commodity, the data 

mentioned above were classified in terms of daily demand statistics Fig. 5. The horizontal axis 
of Fig. 5 is the date, and the vertical axis indicates the demand, indicating obvious fluctuations 
in demand data. Since the dataset is derived from e-commerce data, some dates have extreme 
values due to merchant promotions. Individual extreme values can affect the model training, 
so the extreme values were removed from the data preprocessing. Fig. 5 shows the results 
obtained by filling in the already excluded extremes and using the latter day’s data. 
 

 
Fig. 5. Time series trend of daily demand from 2014 to 2015 

 
Fig. 5 shows a certain seasonal pattern in the data. The demand is higher in autumn and 

winter than in summer, and it also shows certain random characteristics on a seasonal basis. 
However, data periodicity is not obvious, which is one of the difficulties in forecasting 
logistics and storage demand. The demand for a certain commodity will show a certain 
cyclicality in the short term. Still, in macro time, it does not necessarily maintain a stable trend 
due to the competition and substitution of similar products, thus creating a challenge for our 
forecast. 

To make it easier to converge to the optimal solution correctly during the model training 
process and make the prediction results more accurate, in this study, we normalize the data by 
Min-Max normalization method compresses the values range to [0, 1], as in (20): 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024                                 539 

min( )
max( ) min( )

x xx
x x
−′ =

−                                                         (20)
 

Where 'x  is the normalized value, x is the original data value, max(x) and min(x) are the 
maximum and minimum values in the dataset, respectively. 

In addition, to more comprehensively evaluate the performance of the model proposed in 
this study, we also use the dataset provided by the 2021 AliCloud Infrastructure Supply Chain 
Competition (Links to datasets). It contains the daily demand for cloud service resources from 
December 31, 2018 to June 7, 2021. The field is similar to the “2016 demand forecast & 
storage planning” dataset and is not repeated here. The forecast target is the virtual resource 
demand. 

5.2 Predictive evaluation index 
The following 4 indicators are canonically used to indicate forecast accuracy. 

1)The root means square error, which is calculated as (21): 
2

1

1 n

i i
i

RMSE x x
n =

= −∑                                                       (21)
 

2)The absolute square error, which is calculated as (22) 

   
1

1 n

i i
i

MAE x x
n =

= −∑                                                              (22)
 

3)The Mean Absolute Percentage Error is calculated as (23): 

1

100% n
i i

i i

x xMAPE
n x=

−
= ∑



                                                    (23)
 

4)The symmetric Mean Absolute Percentage Error, which is calculated as (24): 
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Where n is the number of simples, xi is the original data, and ix  is the prediction data. 
When the original value is zero, MAPE may be an error because the denominator is zero, 

which may happen in demand forecasting. Therefore, this paper selects MAE, RMSE, and 
SMAPE as metrics. 

5.3 Experimental setting 

The experimental environment of this study consisted of Windows10, 64-bit operating system, 
(Intel)G5400, CPU @3.70GHz, and RAM of 24 GB. We generated a CPU version of the 
PyTorch framework, which was used to build the neural network model. Meanwhile, 
Fbprophet and XGboost libraries were adopted for creating the Prophet and XGboost models, 
respectively.  

In experiments, 80% and 20% of the time series data were used as training and testing sets, 
respectively. The multi-layer attention mechanism with the GRU model was then initialized. 
The batch size is 32, and the number of GRU hidden units in the model is 15. The length of 
the predicted sequence is 14. we use the back-propagation algorithm to train all models. During 
the training process, we use SGD and the Adam optimizer to minimize the mean squared 
error(MSE) between the original demand date and the prediction data. 

2

2
( ) 'L y yθ = −                                                             (25)

 

https://tianchi.aliyun.com/dataset/138679
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5.4 Experimental results 
The prediction results of the MAGRU models are illustrated in Fig. 6. 
 

 
Fig. 6. Forecast results of MAGRU. The horizontal axis is the date for the forecast set, and the vertical 

axis is the real demand of a given forecast date. 
 

The red line in Fig. 6 indicates the prediction results of the model, and the blue line 
indicates the real demand data. It can be seen from the experimental results that the predicted 
value is consistent with the fluctuation of the sample value. MAGRU can better fit the trend 
of commodity demand. The difference between the predicted and real data is smaller in Fig. 
6. It shows the prediction results of the model trained at a prediction length of 14 days. The 
figure shows that the difference between the true value and the predicted value is large on 
some dates. The predicted values are very close to the true values in the early stage, while the 
prediction performance starts to decrease as the prediction length increases. This is because 
the information recorded in the vector after encoder is limited and cannot store the information 
of many time steps, so the performance will drop significantly when the sequence length 
increases. Therefore, within each segment of the prediction sequence, the model can show 
better prediction performance at the starting position, but as the prediction task length 
increases, the prediction accuracy starts to decrease, this is shown in Fig. 6, where the 
predicted values for some dates differ significantly from the true values. 

5.5 Experimental comparison 
To further validate the performance of MAGRU, CNN [15], RNN [3], LSTM [4], GRU [5], 
and DARNN [19] have been experimentally selected as the baseline for comparison with 
MAGRU, and already three existing prediction models have been compared with MAGRU. 
The following Fig. 7 shows the experimental results. From Fig. 7, we can find that the various 
types of prediction methods can predict the future trend, but there is a difference in the 
performance. 
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Fig. 7. MAGRU Forecast Curves compared with RNN Model, ATT-GRU Model, Bi-GRU Model, 

and GRU-LSTM Model 
 

As shown in Fig. 7(a), the predicted trend of the RNN model is close to the true trend, but 
the gap between the predicted and true values is relatively large. As shown in Fig. 7(b) and 
Fig. 7(c), the prediction effect of the ATT-GRU model and the GRU-LSTM model is poorer, 
and the predicted trend is roughly similar to the true trend, but the predicted value is different 
from the true value, and the effect of the prediction model decreases as the length of the 
predicted time series increases. This indicates that the neural network can only have some 
accuracy in short time series prediction, but its performance is not as good as the deep learning 
model to predict future fluctuation changes. As shown in Fig. 7(d), the GRU-LSTM model 
can predict the trend changes and fluctuations of future data in the early period. However, 
compared with MAGRU, the predicted and actual values show large differences with the 
increase of time series length. 

The MAGRU model proposed in this study resulted in improved prediction accuracy. The 
difference between predicted and true values is small. The periodic trend of data is not obvious, 
but our model can better fit its fluctuation. The MAGRU model better solves the problem that 
the performance of the RNN model deterioration with time, and the statistical learning model 
cannot adapt well to the frequent fluctuation of data and can better provide the trend of future 
demand changes. The model’s predictions are more accurate than both statistical methods of 
time series forecasting models and neural network time series forecasting methods. 

 

 
(a)                                                                   (b) 

 
(c)                                                                   (d) 
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We add a commodity demand dataset to validate the model generalization to provide a 

more comprehensive study of model performance. We selected another commodity demand 
data from the data provided by the Alibaba Tianchi Competition in 2016. This study labeled 
the dataset used above as Commodity1 and the newly added commodity dataset as 
Commodity2. 

In this study, we used three different prediction series lengths. Specifically, it consists of 7, 
14, and 21 days, the time step setting is 14 days. In order to verify the performance of the 
model at different series length, the following experiments were performed on the data to 
compare the prediction results of different models at different prediction lengths. We 
compared the model to a baseline model and three existing correlation models on the same 
dataset:  
 CNN [15]: CNNs are deep learning algorithms that are particularly powerful for analysis of 
images, recognizing spatial hierarchies in data. 
 RNN [3]: A type of neural network that excel in processing sequences of data for 
applications like language modeling and speech recognition. 
 LSTM [4]: A special kind of RNN, capable of learning long-term dependencies in sequence 
data. 
 GRU [5]: A variant of RNNs that aim to solve the vanishing gradient problem and are 
efficient for sequence prediction problems. 
 DARNN [19]: The model utilizes a convolutional layer, three DAR modules, a 
parameterized rectified linear unit (PReLU) function, and global maximum pooling (GMP) to 
extract a depth representation from the input signal, and inputs it into the RUL prediction 
subnetwork to obtain predictions. 
 GRU-LSTM [41]: An Attention-Based GRU-LSTM Model Using Gated Recursive Units 
(GRUs) with Long Short-Term Memory (LSTM). 
 Bi-GRU [42]: An attention-based Bi-GRU network using time-series features for survival 
prediction. 
 ATT-GRU [43]: A Short-Term Load Forecasting Model Using Attention-Based GRU to 
Pay More Attention to Key Variables and Improve Prediction Performance for Long Input 
Sequences 

On datasets Commodity1 and Commodity2 we used batch sizes, epochs and learning rates 
of 32, 2000, 0.00001 and 32, 1000, 0.0001. The Table 1 below shows the best performance of 
each approach under different parameter settings. 
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Table 1. Performance comparison for the demand prediction task (2016 dataset). 
(the best results are in bold) 

Predict 
length 

7days 14days 21days 
MAE RMSE SMAPE MAE RMSE SMAPE MAE RMSE SMAPE 

Commodity1 
CNN 4.00 4.74 73.81% 3.31 4.15 67.94% 3.47 4.06 73.79% 
RNN 2.47 3.00 56.00% 2.26 2.62 48.45% 2.08 2.41 45.82% 

LSTM 4.89 5.24 126.34% 4.89 5.29 154.89% 4.28 4.75 142.14% 
GRU 3.96 4.40 168.89% 3.83 4.30 99.55% 3.04 3.69 79.25% 

DARNN 3.59 4.23 102.96% 4.23 4.59 114.41% 4.35 4.74 114.88% 
GRU-LSTM 3.91 4.31 111.51% 4.19 4.64 114.93% 3.75 4.22 111.28% 

Bi-GRU 3.45 4.02 90.97% 3.06 3.55 72.35% 2.57 3.09 60.86% 
ATT-GRU 2.69 3.40 62.32% 2.68 3.18 58.47% 2.18 2.74 48.84% 
MAGRU 1.46 1.83 27.51% 1.76 2.02 34.41% 1.73 1.97 36.03% 

Commodity2 
CNN 8.64 10.19 56.77% 7.42 9.04 57.47% 7.01 8.39 66.41% 
RNN 4.42 6.47 22.33% 7.00 8.89 32.45% 7.91 10.10 35.14% 

LSTM 11.08 12.75 76.27% 10.83 12.21 62.32% 10.68 12.37 56.28% 
GRU 9.60 11.03 59.83% 11.26 12.49 61.44% 11.64 13.16 59.85% 

DARNN 8.71 9.86 97.76% 7.50 8.50 92.13% 9.00 10.10 100.02% 
GRU-LSTM 3.26 4.58 15.54% 5.62 7.38 24.69% 6.52 8.73 27.39% 

Bi-GRU 6.44 8.61 36.14% 7.82 9.55 38.28% 8.06 10.13 36.88% 
ATT-GRU 9.46 10.47 58.04% 11.95 13.08 65.89% 12.75 14.16 67.17% 
MAGRU 3.46 4.29 16.58% 5.19 6.64 22.50% 6.06 7.94 25.10% 
 
Table 1 shows that for the Commodity1 dataset, when the prediction length is 7 days, the 

MAE, RMSE and SMAPE achieved the best results, which decreased by 40.89%, 39.00% and 
50.87% compared with the best model. The MAE, RMSE and SMAPE were decreased by 
22.12%, 22.90% and 28.98% for the prediction length of 14 days compared to the best model. 
The MAE, RMSE, and SMAPE were decreased by 16.83%, 18.26%, and 21.37% for the 
prediction length of 21 days compared to the best model. 

On the other hand, the dataset we used does not have obvious periodicity, so the method 
based on RNN takes longer time dependence into account and has a better effect than the 
machine learning method. 

For the Commodity 2 dataset, in most cases MAGRU achieved the best results in MAE, 
RMSE and RMSE, and the RMSE decreased by 6.33% to the best model. When the prediction 
length is 14, MAE, RMSE, and SMAPE decrease by 7.65%, 10.03%, and 8.87% compared 
with the best model. When the prediction length is 21, MAE, RMSE, and SMAPE decrease 
by 7.06%, 9.05%, and 8.36% compared with the next second model. The improvement for the 
Commodity2 dataset was smaller than that for Commodity1 because the data of Commodity2 
were more distributed and had smaller values. 

We also used the data provided by the AliCloud Infrastructure Supply Chain Competition 
2021 for our experiments. Similarly, we selected two types of commodities in the dataset as 
experimental data, labeled unit1 and unit2, respectively, to examine the performance of the 
model under different length sequence tasks. On datasets Unit1 and Unit2 we used batch sizes, 
epochs and learning rates of 32, 1000, 0.0005 and 32, 2000, 0.0001. The experimental results 
are shown in Table 2. 
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Table 2 Performance comparison for the demand prediction task (2021 dataset). 

(the best results are in bold) 
Predict 
length 

7days 14days 21days 
MAE RMSE SMAPE MAE RMSE SMAPE MAE RMSE SMAPE 

Unit1 
CNN 66.02 66.04 45.33% 68.24 68.30 46.49% 69.53 69.65 47.14% 
RNN 96.65 96.65 60.57% 98.41 98.43 61.33% 100.14 100.18 62.07% 

LSTM 123.67 123.92 84.95% 123.16 123.30 83.34% 124.17 124.26 83.27% 
GRU 120.16 120.17 81.32% 120.20 120.21 80.40% 121.06 121.07 80.27% 

DARNN 60.01 60.03 39.19% 60.82 60.94 39.59% 64.79 65.35 41.54% 
GRU-LSTM 43.20 43.21 23.19% 44.86 44.91 23.96% 46.54 46.63 24.73% 

Bi-GRU 83.75 83.77 50.46% 83.94 83.95 50.07% 84.86 84.88 50.23% 
ATT-GRU 125.47 125.47 86.44% 127.05 127.06 86.94% 128.68 128.71 87.50% 
MAGRU 42.32 42.33 22.67% 43.37 43.39 23.07% 44.77 44.83 23.68% 

Unit2 
CNN 26.59 26.59 151.95% 27.09 27.11 153.45% 27.75 27.78 154.54% 
RNN 15.82 16.78 74.06% 13.48 14.24 59.10% 12.97 13.53 54.93% 

LSTM 26.76 26.95 155.60% 20.68 21.70 108.98% 18.56 19.55 92.17% 
GRU 25.06 25.24 138.98% 21.78 22.13 112.46% 20.50 20.83 101.36% 

DARNN 27.07 27.08 149.75% 27.80 27.82 150.72% 30.03 30.24 153.21% 
GRU-LSTM 7.84 7.86 29.10% 7.81 7.82 29.00% 8.07 8.09 29.81% 

Bi-GRU 19.99 20.19 97.40% 16.91 17.34 77.78% 14.80 15.43 65.28% 
ATT-GRU 22.43 22.45 114.42% 21.92 21.94 110.47% 21.94 21.95 109.18% 
MAGRU 7.68 8.30 29.35% 6.40 6.90 23.74% 6.24 6.59 22.69% 

 
Table 2 shows the performance of the baseline on the 2021 dataset and the performance of 

MAGRU. 
In Unit1, the MAGRU model exhibited significant improvements over the best-performing 

model. For prediction sequence lengths of 7, enhancements were observed as follows: MAE 
improved by 2.04%, RMSE by 2.04%, and SMAPE by 2.24%. Similarly, for sequence lengths 
of 14, the improvements were 3.32% in MAE, 3.38% in RMSE, and 3.71% in SMAPE. When 
applied to a prediction task with a sequence length of 21, the MAGRU model showed 
improvements of 3.80% in MAE, 3.86% in RMSE, and 4.25% in SMAPE compared to the 
best model. It shown that MAGRU is most effective for longer prediction tasks, and its long-
term prediction advantage is more pronounced.  

The traditional time series model, prophet its poor predictive performance because it 
models only temporal correlation and ignores the impact of external features on the prediction 
task. RNN, LSTM and GRU still have limitations for long sequence prediction tasks and has 
poor performance. 

In Unit2, MAGRU achieved the best results for each prediction task length. The MAE 
improved by 2.04%, 18.05% and 22.68% from the best model, the RMSE improved by 11.76% 
and 18.54% from the best model when the prediction length is 14 and 21, and SMAPE 
improved by 18.14% and 23.88% from the best model when the prediction length is 14 and 
21. Upon analyzing the performance of various models on the Unit2 dataset, it is observed that 
the variance in their predictive efficacy is significantly greater compared to other datasets. 
This discrepancy primarily stems from the substantial differences in sample feature values, 
data distribution, and noise levels in the Unit2 dataset relative to others. These variations 
significantly impact the predictive capabilities of the models, underscoring the importance of 
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adapting to specific dataset characteristics. This observation highlights the necessity of a 
thorough understanding and analysis of dataset features when applying machine learning 
models, emphasizing their critical role in achieving accurate predictions. 

MAGRU captures long-sequence dependencies using an attention mechanism combined 
with external features and GRU networks. For long-term serial prediction tasks, MAGRU is 
better than other models. The comparison shows that MAGRU has a high generalization 
capability while ensuring high accuracy.  

This study proposed MAGRU model outperforms other models in forecasting, and the 
overall accuracy is better than that of a single model. Therefore, MAGRU is suitable for 
logistics demand forecasting in realistic scenarios and can replace a single model. 

5.6 Ablation Study 
To further evaluate the effectiveness of the individual components in the MAGRU, we conduct 
ablation studies on the Commodity1 dataset.  

We have named the variants of MAGRU as follows: 
MAGRU-NE: To validate the attention mechanism at the input, we remove it from the 

Encoder section. 
MAGRU-ND: We simply remove the attention mechanism in the Decoder stage. We 

provide the results of the comparison of MA-GRU and its variants in Fig. 8. 
 

 
Fig. 8. Components analysis on the Commodity1 dataset 

 

Under the same experimental settings as MAGRU, we perform experiments on its two 
variants, MAGRU-NE and MAGRU-ND, at multiple prediction length. The above Fig. 8 
shows the average prediction results of the model at different prediction length. 

By comparison, we studied that the MAE of MA-GRU prediction results is significantly 
smaller than MAGRU-NE and MAGRU-ND. It can be considered that the attention 
mechanism in the encoder stage and the decoder stage is an important factor affecting the 
effect of the model, and adding multiple layers of attention mechanism to the model can 
effectively improve the model effect. The reason is that the attention mechanism can 
effectively capture key information about the entire sequence. 

By the multi-layer attention mechanism, the model can extract information that is difficult 
to express in features. The GRU can receive the output of the attention mechanism and connect 
the information output from the previous unit. MAGRU extracts the time-domain correlation 
of the data, and the model obtains high-value information to improve prediction accuracy. 
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5.7 visual analysis 
To gain a deeper understanding of the performance of MAGRU models in demand forecasting, 
this study analyzes in detail the loss dynamics of the model on the task of commodity demand 
forecasting. We recorded the model's loss variations during the training and testing phases and 
observed the loss values for seven consecutive days of forecasting performed after the model 
completed training. The following graphs (Fig. 9 and Fig. 10) demonstrate the model's loss 
performance at various stages, providing visual evidence for assessing its forecasting ability. 
 

 
Fig. 9. MSE trends for training and testing             Fig. 10. MSE of the trained model predicting 

demand for the next 7 days 
 

As shown in Fig. 9, as the number of iterations (Epochs) increases, the model's MSE on 
the training set and the loss on the test set show a significant decreasing trend and start to 
converge after 1000 epochs. Further, we performed predictions on the trained model for 7 
consecutive days, and the loss values for each day are shown in Fig. 10. The results show that 
the model performs better in the early stages of short-term forecasting, but the value of the 
loss rises gradually as the length of the forecast increases. This trend suggests that although 
the model is able to capture certain time series features, its accuracy still decreases slightly 
when making long-term forecasts, which emphasizes the need to improve the model in future 
work in order to increase its stability and accuracy in long-term forecasting. 

In summary, the GRU model has demonstrated its effectiveness on the task of commodity 
demand forecasting, especially in short-term forecasting. However, the fluctuating 
performance of the model on long-term forecasting suggests that we should explore 
hyperparameter tuning, introduce more sophisticated regularization techniques, or improve the 
loss function to mitigate overfitting and enhance the generalization ability of the model in 
subsequent studies. 

6. Conclusion 
In this study, a multi-layer attention mechanism with the GRU model is constructed using 
historical data of commodity demand in real warehouses. The attention mechanism can capture 
key information of the input sequence. We propose the embedding approach of timestamp and 
data integration that can further explore the factors implied in the demand data to improve the 
model's accuracy. The experimental results show that MAGRU takes precedence over state-
of-the-art baseline models of the same type for long series prediction problems. In addition, 
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the model has a simple structure and low training cost, which can provide an efficient solution 
for realistic warehouse demand forecasting.  

This study has important implications for logistics operators to significantly reduce 
operating costs and enhance the customer experience. Integrating attention mechanisms and 
deep learning methods is a hot issue. However, it is important to recognize certain limitations 
of our study that deserve consideration in future work. 

First, our model does not consider spatial factors, such as the geographic location and 
storage capacity of individual warehouses, which can have a significant impact on demand 
patterns. Second, we have not explored the coordination and interaction between multiple 
warehouses. In real logistics scenarios, inventory and replenishment strategies among multiple 
warehouses can affect demand patterns. Therefore, future research should focus on 
incorporating spatial factors and exploring the issue of multi-warehouse coordination to 
provide a more comprehensive solution for warehouse demand forecasting and to more 
accurately reflect complex logistics environments. Finally, although our experimental results 
show that MAGRU outperforms the baseline model in long series forecasting, the 
generalization performance of the model may vary across warehouses and demand patterns. 
Further validation and experiments are needed to determine its applicability in different 
environments. 

In the future, we will explore the improvement of MAGRU in prediction involving spatial 
factors and apply it to a wider range of fields, such as sales prediction and traffic flow 
prediction. 
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